0=141-16x^2

Simple and best practice solution for 0=141-16x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=141-16x^2 equation:



0=141-16x^2
We move all terms to the left:
0-(141-16x^2)=0
We add all the numbers together, and all the variables
-(141-16x^2)=0
We get rid of parentheses
16x^2-141=0
a = 16; b = 0; c = -141;
Δ = b2-4ac
Δ = 02-4·16·(-141)
Δ = 9024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9024}=\sqrt{64*141}=\sqrt{64}*\sqrt{141}=8\sqrt{141}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{141}}{2*16}=\frac{0-8\sqrt{141}}{32} =-\frac{8\sqrt{141}}{32} =-\frac{\sqrt{141}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{141}}{2*16}=\frac{0+8\sqrt{141}}{32} =\frac{8\sqrt{141}}{32} =\frac{\sqrt{141}}{4} $

See similar equations:

| (5x+29)+(7x-11)=180 | | 0=x^2-3/4x-13 | | -7(x+3)=-2(x=3)-5x | | 17^{3x+7}=5 | | -677=6x-1 | | 229=-u+4 | | 5p-3p=4 | | 5/4=y−14. | | 3y-2(7)=8 | | 15/a=20/12 | | 2x-3+2x+3x+1=40 | | 10+1/3x=8 | | 4(d-4)+2=3(4+1) | | 11r=+60=16 | | 7-5y=0 | | (5x-7)/12=X/3 | | 5/6x9/10= | | 3x-14=8+3 | | 2x/6-3x/8-1/12=1/3+x | | 10x=40x-50 | | 4x+3=2/ | | 10m=40m-50 | | 12x+4x=8x | | 2p/4+28/4=5 | | 7p-4=3p+28 | | 4x2+8x=10 | | X^4-x^2-x=10 | | 13^4x+2=42 | | 3y+42=180 | | 0,13(4x-20)=0,5x-6 | | 51-c=-133 | | 22-3p=4 |

Equations solver categories